博客
关于我
hdu2767(强连通分量+缩点)
阅读量:245 次
发布时间:2019-03-01

本文共 3084 字,大约阅读时间需要 10 分钟。

Proving Equivalences

Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 7367 Accepted Submission(s): 2547

Problem Description

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:

  1. A is invertible.
  2. Ax = b has exactly one solution for every n × 1 matrix b.
  3. Ax = b is consistent for every n × 1 matrix b.
  4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
  • m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:

  • One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2
对整个图求一次强连通分量,如果强连通分量为1则直接输出0,否则进行缩点(啥叫缩点:我们求强连通分量时,给每个顶点做一个标记,标记该顶点属于哪个强联通分量,然后属于同一个强连通分量的点就可以看作同一个点了。这就是所谓的“缩点”)对整个图缩点后这个图就变成了有向无环图,假设这个有向无环图入度为零的点有a个,出度为零的点有b个,这结果为max(a,b)(这个结论可以画个图推一推)

#include 
using namespace std;const int N=20010;vector
> vec(N);int low[N],dfn[N],Stack[N],belong[N];bool InStack[N];int in[N],out[N];int Index,top,ans;void Tarjan(int u){ low[u]=dfn[u]=(++Index); Stack[top++]=u; InStack[u]=true; for(int i=0;i
low[v]){ low[u]=low[v]; } } else if(InStack[v]&&low[u]>dfn[v]){ low[u]=dfn[v]; } } if(low[u]==dfn[u]){ int v; ans++; do{ v=Stack[--top]; belong[v]=ans; InStack[v]=false; } while(v!=u); }}void init(int n){ for(int i=1;i<=n;i++){ vec[i].clear(); } memset(InStack,false,sizeof(InStack)); memset(belong,0,sizeof(belong)); memset(dfn,0,sizeof(dfn)); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); Index=top=ans=0;}int main(){ int T; scanf("%d",&T); while(T--){ int n,m; scanf("%d %d",&n,&m); init(n); for(int i=0;i

转载地址:http://nnfx.baihongyu.com/

你可能感兴趣的文章
mysql加强(4)~多表查询:笛卡尔积、消除笛卡尔积操作(等值、非等值连接),内连接(隐式连接、显示连接)、外连接、自连接
查看>>
mysql加强(5)~DML 增删改操作和 DQL 查询操作
查看>>
mysql加强(6)~子查询简单介绍、子查询分类
查看>>
mysql加强(7)~事务、事务并发、解决事务并发的方法
查看>>
MySQL千万级多表关联SQL语句调优
查看>>
mysql千万级大数据SQL查询优化
查看>>
MySQL千万级大表优化策略
查看>>
MySQL单实例或多实例启动脚本
查看>>
MySQL压缩包方式安装,傻瓜式教学
查看>>
MySQL原理、设计与应用全面解析
查看>>
MySQL原理简介—1.SQL的执行流程
查看>>
MySQL参数调优详解
查看>>
mysql参考触发条件_MySQL 5.0-触发器(参考)_mysql
查看>>
MySQL及navicat for mysql中文乱码
查看>>
MySqL双机热备份(二)--MysqL主-主复制实现
查看>>
MySQL各个版本区别及问题总结
查看>>
MySql各种查询
查看>>
mysql同主机下 复制一个数据库所有文件到另一个数据库
查看>>
mysql启动以后会自动关闭_驾照虽然是C1,一直是开自动挡的车,会不会以后就不会开手动了?...
查看>>
mysql启动和关闭外键约束的方法(FOREIGN_KEY_CHECKS)
查看>>